741 research outputs found

    Exploring the receptor origin of vibration-induced reflexes

    Get PDF
    STUDY DESIGN: An experimental design. OBJECTIVES: The aim of this study was to determine the latencies of vibration-induced reflexes in individuals with and without spinal cord injury (SCI), and to compare these latencies to identify differences in reflex circuitries. SETTING: A tertiary rehabilitation center in Istanbul. METHODS: Seventeen individuals with chronic SCI (SCI group) and 23 participants without SCI (Control group) were included in this study. Latency of tonic vibration reflex (TVR) and whole-body vibration-induced muscular reflex (WBV-IMR) of the left soleus muscle was tested for estimating the reflex origins. The local tendon vibration was applied at six different vibration frequencies (50, 85, 140, 185, 235, and 265 Hz), each lasting for 15 s with 3-s rest intervals. The WBV was applied at six different vibration frequencies (35, 37, 39, 41, 43, and 45 Hz), each lasting for 15 s with 3-s rest intervals. RESULTS: Mean (SD) TVR latency was 39.7 (5.3) ms in the SCI group and 35.9 (2.7) ms in the Control group with a mean (95% CI) difference of -3.8 (-6.7 to -0.9) ms. Mean (SD) WBV-IMR latency was 45.8 (7.4) ms in the SCI group and 43.3 (3.0) ms in the Control group with a mean (95% CI) difference of -2.5 (-6.5 to 1.4) ms. There were significant differences between TVR latency and WBV-IMR latency in both the groups (mean (95% CI) difference; -6.2 (-9.3 to -3.0) ms, p = 0.0001 for the SCI group and -7.4 (-9.3 to -5.6) ms, p = 0.011 for Control group). CONCLUSIONS: The results suggest that the receptor of origin of TVR and WBV-IMR may be different

    Identification of TNF-alpha-Responsive Promoters and Enhancers in the Intestinal Epithelial Cell Model Caco-2

    Get PDF
    The Caco-2 cell line is one of the most important in vitro models for enterocytes, and is used to study drug absorption and disease, including inflammatory bowel disease and cancer. In order to use the model optimally, it is necessary to map its functional entities. In this study, we have generated genome-wide maps of active transcription start sites (TSSs), and active enhancers in Caco-2 cells with or without tumour necrosis factor (TNF)-α stimulation to mimic an inflammatory state. We found 520 promoters that significantly changed their usage level upon TNF-α stimulation; of these, 52% are not annotated. A subset of these has the potential to confer change in protein function due to protein domain exclusion. Moreover, we locate 890 transcribed enhancer candidates, where ∼50% are changing in usage after TNF-α stimulation. These enhancers share motif enrichments with similarly responding gene promoters. As a case example, we characterize an enhancer regulating the laminin-5 γ2-chain (LAMC2) gene by nuclear factor (NF)-κB binding. This report is the first to present comprehensive TSS and enhancer maps over Caco-2 cells, and highlights many novel inflammation-specific promoters and enhancers

    Common carotid intima media thickness and ankle-brachial pressure index correlate with local but not global atheroma burden:a cross sectional study using whole body magnetic resonance angiography

    Get PDF
    Common carotid intima media thickness (CIMT) and ankle brachial pressure index (ABPI) are used as surrogate marker of atherosclerosis, and have been shown to correlate with arterial stiffness, however their correlation with global atherosclerotic burden has not been previously assessed. We compare CIMT and ABPI with atheroma burden as measured by whole body magnetic resonance angiography (WB-MRA).50 patients with symptomatic peripheral arterial disease were recruited. CIMT was measured using ultrasound while rest and exercise ABPI were performed. WB-MRA was performed in a 1.5T MRI scanner using 4 volume acquisitions with a divided dose of intravenous gadolinium gadoterate meglumine (Dotarem, Guerbet, FR). The WB-MRA data was divided into 31 anatomical arterial segments with each scored according to degree of luminal narrowing: 0 = normal, 1 = <50%, 2 = 50-70%, 3 = 70-99%, 4 = vessel occlusion. The segment scores were summed and from this a standardized atheroma score was calculated.The atherosclerotic burden was high with a standardised atheroma score of 39.5±11. Common CIMT showed a positive correlation with the whole body atheroma score (β 0.32, p = 0.045), however this was due to its strong correlation with the neck and thoracic segments (β 0.42 p = 0.01) with no correlation with the rest of the body. ABPI correlated with the whole body atheroma score (β -0.39, p = 0.012), which was due to a strong correlation with the ilio-femoral vessels with no correlation with the thoracic or neck vessels. On multiple linear regression, no correlation between CIMT and global atheroma burden was present (β 0.13 p = 0.45), while the correlation between ABPI and atheroma burden persisted (β -0.45 p = 0.005).ABPI but not CIMT correlates with global atheroma burden as measured by whole body contrast enhanced magnetic resonance angiography in a population with symptomatic peripheral arterial disease. However this is primarily due to a strong correlation with ilio-femoral atheroma burden

    Experiences with surgical treatment of ventricle septal defect as a post infarction complication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Complications of acute myocardial infarction (AMI) with mechanical defects are associated with poor prognosis. Surgical intervention is indicated for a majority of these patients. The goal of surgical intervention is to improve the systolic cardiac function and to achieve a hemodynamic stability. In this present study we reviewed the outcome of patients with post infarction ventricular septal defect (PVSD) who underwent cardiac surgery.</p> <p>Methods</p> <p>We analysed retrospectively the hospital records of 41 patients, whose ages range from 48 to 81, and underwent a surgical treatment between 1990 and 2005 because of PVSD.</p> <p>Results</p> <p>In 22 patients concomitant coronary artery bypass grafting (CAGB) was performed. In 15 patients a residual shunt was found, this required re-op in seven of them. The time interval from infarct to rupture was 8.7 days and from rupture to surgery was 23.1 days. Hospital mortality in PVSD group was 32%. The mortality of urgent repair within 3 days of intractable cardiogenic shock was 100%. The mortality of patients with an anterior VSD and a posterior VSD was 29.6% vs 42.8%, respectively. All patients who underwent the surgical repair later than day 36 survived.</p> <p>Conclusion</p> <p>Surgical intervention is indicated for a majority of patients with mechanical complications. Cardiogenic shock remains the most important factor that affects the early results. The surgical repair of PVSD should be performed 4–5 weeks after AMI. To improve surgical outcome and hemodynamics the choice of surgical technique and surgical timing as well as preoperative management should be tailored for each patient individually.</p

    Is silicon a panacea for alleviating drought and salt stress in crops?

    Get PDF
    Salinity affects around 20% of all arable land while an even larger area suffers from recurrent drought. Together these stresses suppress global crop production by as much as 50% and their impacts are predicted to be exacerbated by climate change. Infrastructure and management practices can mitigate these detrimental impacts, but are costly. Crop breeding for improved tolerance has had some success but is progressing slowly and is not keeping pace with climate change. In contrast, Silicon (Si) is known to improve plant tolerance to a range of stresses and could provide a sustainable, rapid and cost-effective mitigation method. The exact mechanisms are still under debate but it appears Si can relieve salt stress via accumulation in the root apoplast where it reduces “bypass flow of ions to the shoot. Si-dependent drought relief has been linked to lowered root hydraulic conductance and reduction of water loss through transpiration. However, many alternative mechanisms may play a role such as altered gene expression and increased accumulation of compatible solutes. Oxidative damage that occurs under stress conditions can be reduced by Si through increased antioxidative enzymes while Si-improved photosynthesis has also been reported. Si fertilizer can be produced relatively cheaply and to assess its economic viability to improve crop stress tolerance we present a cost-benefit analysis. It suggests that Si fertilization may be beneficial in many agronomic settings but may be beyond the means of smallholder farmers in developing countries. Si application may also have disadvantages, such as increased soil pH, less efficient conversion of crops into biofuel and reduced digestibility of animal fodder. These issues may hamper uptake of Si fertilization as a routine agronomic practice. Here, we critically evaluate recent literature, quantifying the most significant physiological changes associated with Si in plants under drought and salinity stress. Analyses show that metrics associated with photosynthesis, water balance and oxidative stress all improve when Si is present during plant exposure to salinity and drought. We further conclude that most of these changes can be explained by apoplastic roles of Si while there is as yet little evidence to support biochemical roles of this element

    Antioxidant rich flavonoids from Oreocnide integrifolia enhance glucose uptake and insulin secretion and protects pancreatic β-cells from streptozotocin insult

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin deficiency is the prime basis of all diabetic manifestations and agents that can bring about insulin secretion would be of pivotal significance for cure of diabetes. To test this hypothesis, we carried out bioactivity guided fractionation of <it>Oreocnide integrifolia </it>(Urticaceae); a folklore plant consumed for ameliorating diabetic symptoms using experimental models.</p> <p>Methods</p> <p>We carried out bioassay guided fractionation using RINmF and C2C12 cell line for glucose stimulated insulin secretion (GSIS) and glucose uptake potential of fractions. Further, the bioactive fraction was challenged for its GSIS in cultured mouse islets with basal (4.5 mM) and stimulated (16.7 mM) levels of glucose concentrations. The Flavonoid rich fraction (FRF) was exposed to 2 mM streptozotocin stress and the anti-ROS/RNS potential was evaluated. Additionally, the bioactive fraction was assessed for its antidiabetic and anti-apoptotic property <it>in-vivo </it>using multidose streptozotocin induced diabetes in BALB/c mice.</p> <p>Results</p> <p>The results suggested FRF to be the most active fraction as assessed by GSIS in RINm5F cells and its ability for glucose uptake in C2C12 cells. FRF displayed significant potential in terms of increasing intracellular calcium and cAMP levels even in presence of a phosphodiesterase inhibitor, IBMX in cultured pancreatic islets. FRF depicted a dose-dependent reversal of all the cytotoxic manifestations except peroxynitrite and NO formation when subjected <it>in-vitro </it>along with STZ. Further scrutinization of FRF for its <it>in-vivo </it>antidiabetic property demonstrated improved glycemic indices and decreased pancreatic β-cell apoptosis.</p> <p>Conclusions</p> <p>Overall, the flavonoid mixture has shown to have significant insulin secretogogue, insulinomimetic and cytoprotective effects and can be evaluated for clinical trials as a therapeutant in the management of diabetic manifestations.</p

    Intestinal Epithelial Cell-Specific Deletion of PLD2 Alleviates DSS-Induced Colitis by Regulating Occludin

    Get PDF
    Ulcerative colitis is a multi-factorial disease involving a dysregulated immune response. Disruptions to the intestinal epithelial barrier and translocation of bacteria, resulting in inflammation, are common in colitis. The mechanisms underlying epithelial barrier dysfunction or regulation of tight junction proteins during disease progression of colitis have not been clearly elucidated. Increase in phospholipase D (PLD) activity is associated with disease severity in colitis animal models. However, the role of PLD2 in the maintenance of intestinal barrier integrity remains elusive. We have generated intestinal specific Pld2 knockout mice (Pld2 IEC-KO) to investigate the mechanism of intestinal epithelial PLD2 in colitis. We show that the knockout of Pld2 confers protection against dextran sodium sulphate (DSS)-induced colitis in mice. Treatment with DSS induced the expression of PLD2 and downregulated occludin in colon epithelial cells. PLD2 was shown to mediate phosphorylation of occludin and induce its proteasomal degradation in a c-Src kinase-dependent pathway. Additionally, we have shown that treatment with an inhibitor of PLD2 can rescue mice from DSS-induced colitis. To our knowledge, this is the first report showing that PLD2 is pivotal in the regulation of the integrity of epithelial tight junctions and occludin turn over, thereby implicating it in the pathogenesis of colitis

    Wave instabilities in the presence of non vanishing background in nonlinear Schrodinger systems

    Get PDF
    We investigate wave collapse ruled by the generalized nonlinear Schroedinger (NLS) equation in 1+1 dimensions, for localized excitations with non-zero background, establishing through virial identities a new criterion for blow-up. When collapse is arrested, a semiclassical approach allows us to show that the system can favor the formation of dispersive shock waves. The general findings are illustrated with a model of interest to both classical and quantum physics (cubic-quintic NLS equation), demonstrating a radically novel scenario of instability, where solitons identify a marginal condition between blow-up and occurrence of shock waves, triggered by arbitrarily small mass perturbations of different sign

    Upregulation of miR-196b Confers a Poor Prognosis in Glioblastoma Patients via Inducing a Proliferative Phenotype

    Get PDF
    PURPOSE: To explore the expression pattern, prognostic value and functional role of miR-196b in glioblastoma (GBM) patients using large cohorts. EXPERIMENTAL DESIGN: MiR-196b expression was measured using the Human v2.0 miRNA Expression BeadChip (Illumina) in 198 frozen glioma tissues. The expression levels of miR-196b were also validated in an independent cohort containing 128 formalin-fixed paraffin-embedded (FFPE) glioma samples using qRT-PCR. The presence of other molecular prognostic indicators was assessed centrally in the glioma samples. Whole genome gene profiling was performed to investigate the underlying biological behavior. MiR-196b functional analyses were performed in U87 and U251 cell lines. RESULTS: The expression levels of miR-196b were inversely correlated with overall survival in GBM patients. Gene set enrichment analysis (GSEA) showed that the gene sets relating to cell cycle were significantly enriched in the cases with miR-196b overexpression. Functional analyses in U87 and U251 cells revealed that miR-196b was involved in cell proliferation. CONCLUSIONS: MiR-196b is overexpressed and confers a poor prognosis via promoting cellular proliferation in GBM patients
    corecore